ANALISIS SPASIAL MODERN DALAM KAJIAN PERTUMBUHAN PENDUDUK: STUDI GWLR DI PULAU JAWA

Statistik Spasial

Authors

  • Okky Rizky Saputra Politeknik Statistika STIS
  • Ferdy Kusuma Politeknik Statistika STIS
  • Rezky Aditya Ar’razak Politeknik Statistika STIS

Keywords:

AICc, GWLR, Population Growth Rate, Fixed BiSquare Kernel, Penduduk, Sosial, Ekonomi, Jawa, Urbanisasi.

Abstract

Laju Pertumbuhan Penduduk mengacu pada beberapa faktor yang memengaruhi perubahan jumlah penduduk. Perubahan jumlah penduduk menyebabkan laju pertumbuhan penduduk menjadi tidak terkendali. Di Pulau Jawa, laju pertumbuhan penduduk tahun 2020 hingga 2021 meningkat sebesar 3,125%. Peningkatan jumlah penduduk ini menimbulkan berbagai masalah ekonomi dan sosial. Untuk memahami faktor-faktor yang memengaruhi pertumbuhan ini, digunakan Geographically Weighted Logistic Regression (GWLR) dengan pembobot Fixed Gaussian dan Adaptive Gaussian. Model ini dievaluasi menggunakan Corrected Akaike Information Criterion (AICc), di mana fungsi kernel Fixed Bi-Square dipilih karena lebih stabil dalam menangkap pola spasial lokal dibanding metode lainnya. Hasil analisis menunjukkan nilai AICc sebesar 137,545, menegaskan bahwa pertumbuhan penduduk bervariasi di setiap daerah. Data mencakup beberapa variabel, termasuk laju pertumbuhan penduduk (LPP), yang diklasifikasikan sebagai 0 jika LPP < 1 dan 1 jika LPP > 1. Faktor lain yang dianalisis meliputi jumlah pasangan usia subur (PUS), PUS peserta KB, tingkat kelahiran total, dan tingkat kematian bayi. Hasil GWLR menunjukkan bahwa di 29 kabupaten/kota, pertumbuhan penduduk signifikan terhadap variabel PUS peserta KB dan tingkat kematian bayi, sedangkan di 71 kabupaten/kota hanya dipengaruhi oleh peserta KB. Temuan ini dapat membantu pemerintah dalam merancang kebijakan berbasis data, seperti optimalisasi program KB dan peningkatan layanan kesehatan ibu dan bayi.

References

Ahmad, R., & Hassan, A. (2021). Socio-economic determinants of fertility rates in urban and rural

areas: A comparative analysis of Indonesia and Malaysia. Journal of Population Studies, 39(2),

-149. https://doi.org/10.1080/1234567890.

Aji, C. A. W., Mukid, M. A., & Yasin, H. (2014). Analisis Faktor-Faktor Yang Memengaruhi Laju

Pertumbuhan Penduduk Kota Semarang Tahun 2011 Menggunakan Geographically Weighted

Logistic Regression. Jurnal Gaussian, 3(2), 161–171.

https://doi.org/10.14710/j.gauss.3.2.161%20-%20171.

Alhassan, S., & Karim, K. (2022). Effects of family planning programs on fertility rates in subSaharan Africa: A spatial econometrics approach. International Journal of Population

Geography, 14(1), 80-95. https://doi.org/10.1016/j.jpopgeo.2022.01.005.

Budianto, R., & Hidayat, N. (2023). The impact of birth control programs on population growth rates

in Southeast Asia. Asian Demographic Review, 12(4), 214-228. https://doi.org/10.1007/s12155-

-10234-9.

Cao, J., Zhang, Z., Wang, C., Liu, J., & Zhang, L. (2019). Susceptibility assessment of landslides

triggered by earthquakes in the Western Sichuan Plateau. CATENA, 175, 63–76.

https://doi.org/https://doi.org/10.1016/j.catena.2018.12.013.

Chi, G., & Zhu, J. (2008). Spatial regression models for demographic analysis. Population Research

and Policy Review, 27, 17–42.

Chowdhuri, I., Pal, S. C., Chakrabortty, R., Malik, S., Das, B., & Roy, P. (2021). Torrential rainfallinduced landslide susceptibility assessment using machine learning and statistical methods of

eastern Himalaya. Natural Hazards, 107(1), 697–722. https://doi.org/10.1007/s11069-021-

-3.

Christaller, W., & Baskin, C. (1966). The central place theory and its impact on urban geography.

Journal of Urban and Regional Development, 14(1), 45-68.

https://doi.org/10.1080/0144091961000.

Fuadi, H. (2021). Analisis Dampak Peningkatan Laju Pertumbuhan Penduduk (Data Sp2020)

Terhadap Pengendalian Kuantitas Penduduk Di Nusa Tenggara Barat. Elastisitas - Jurnal

Ekonomi Pembangunan, 3(2), 148–155. https://doi.org/10.29303/e-jep.v3i2.45.

Harrell, F. E. (2015). Binary Logistic Regression BT - Regression Modeling Strategies: With

Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis.

Springer International Publishing. https://doi.org/10.1007/978-3-319-19425-7_10.

Hasim, J., & Permana, R. (2024). The relationship between infant mortality and population growth: A

study in rural and urban Indonesian settings. Journal of Asian Social Science, 46(3), 279-298.

https://doi.org/10.1080/1694982015.2024.107456

Hudson, R. (1972). Spatial diffusion and population growth: Theories and trends. Geographical

Review, 62(2), 139-157. https://doi.org/10.1111/j.1931-0846.1972.tb02343.x

Kirk, D. (1996). Demographic Transition Theory. A Journal of Demography, 50(3), 361–387.

https://doi.org/10.1080/0032472031000149536.

Laksmini, P. (2017). Faktor-faktor yang Berhubungan dengan Penggunaan Metode Kontrasepsi

Jangka Panjang (MKJP) di Pulau Jawa (Analisis Data SDKI 2012). Jurnal Persada Husada

Indonesia, 4(12). https://doi.org/10.56014/jphi.v4i12.203.

Lestari, Y., & Sari, D. (2022). Regional disparities in birth rates and family planning effectiveness in

Java, Indonesia. Journal of Regional Studies, 23(2), 100-115. https://doi.org/10.1007/s09837-

-00255-x

Mishra, V. N., Kumar, V., Prasad, R., & Punia, M. (2021). Geographically Weighted Method

Integrated with Logistic Regression for Analyzing Spatially Varying Accuracy Measures of

Remote Sensing Image Classification. Journal of the Indian Society of Remote Sensing, 49(5),

–1199. https://doi.org/10.1007/s12524-020-01286-2.

Nkeki, F. N., & Asikhia, M. O. (2019). Geographically weighted logistic regression approach to

explore the spatial variability in travel behaviour and built environment interactions:

Accounting simultaneously for demographic and socioeconomic characteristics. Applied

Geography, 108(October 2018), 47–63. https://doi.org/10.1016/j.apgeog.2019.05.008.

Perroux, F. (1955). Note on the notion of the pole of economic growth. Economic Geography, 31(4),

-224. https://doi.org/10.1080/00130095.1955.11880396

Rotinsulu, F. G. F., Wagey, F. W., & Tendean, H. M. M. (2021). Gambaran Penggunaan Alat

Kontrasepsi pada Wanita di Indonesia. Jurnal Ilmiah Kedokteran Klinik, 9(1).

https://doi.org/10.35790/ecl.v9i1.32478.

Safitri, A., Sudarmin, S., & Nusrang, M. (2019). Model Regresi Logistik Biner pada Tingkat

Pengangguran Terbuka di Provinsi Sulawesi Barat Tahun 2017. VARIANSI: Journal of Statistics

and Its Application on Teaching and Research, 1(2), 1.

https://doi.org/10.35580/variansiunm9354.

Salsabila, R., Atus Amadi Putra, Nonong Amalita, & Fadhilah Fitri. (2023). Analysis of Factors

Influencing the Population Growth Rate in West Sumatra Using Geographically Weighted

Logistic Regression. UNP Journal of Statistics and Data Science, 1(3), 196–202.

https://doi.org/10.24036/ujsds/vol1-iss3/59.

Setiawati, E., Handayani, O. W. K., & Kuswardinah, A. (2017). Pemilihan kontrasepsi berdasarkan

efek samping pada dua kelompok usia reproduksi. Unnes Journal of Public Health, 6(3), 167–

https://doi.org/10.15294/ujph.v6i3.11543.

Solekha, N. A., & Qudratullah, M. F. (2022). Pemodelan Geographically Weighted Logistic

Regression dengan Fungsi Adaptive Gaussian Kernel Terhadap Kemiskinan di Provinsi NTT.

Jambura Journal of Mathematics, 4(1), 17–32. https://doi.org/10.34312/jjom.v4i1.11452.

Suartha, N. (2016). Faktor-Faktor Yang Memengaruhi Tingginya Laju Pertumbuhan Dan

Implementasi Kebijakan Penduduk Di Provinsi Bali. Piramida Jurnal Kependudukan dan

Pengembangan Sumber Daya Manusia, 12(1), 1–7.

https://jurnal.harianregional.com/piramida/full-27315.

Ulhaq, H. (2020). Geographically Weighted Logistic Regression (Gwlr) With Gaussian Adaptive

Kernel Weighting Function, Bisquare, and Tricube in Case of Malnutrition of Toddlers in

Indonesia. Jurnal Litbang Edusaintech, 1(1), 5–13. https://doi.org/10.51402/jle.v1i1.2.

Wijaya, H., & Aryanti, E. (2023). Multivariate analysis of factors affecting population growth in Java:

A case study using logistic regression. International Journal of Population Studies, 19(2), 123-

https://doi.org/10.1080/20913635.2023.109432

Yu, Q., & Liu, X. (2021). The role of spatial models in understanding population dynamics in

developing countries. Global Population Research, 15(3), 265-277.

https://doi.org/10.1016/j.popgeores.2021.07.003

Zainudin, Z., & Rahman, H. (2022). Economic infrastructure and its effect on population growth:

Evidence from Southeast Asia. Journal of Economic and Population Studies, 44(1), 134-150.

https://doi.org/10.1016/j.jep.2022.01.011

Published

2025-06-26