Pelabelan Komposit pada Beberapa Keluarga Graf Unicyclic

Authors

  • Hafif Komarullah Tadris Matematika, Universitas Al-Falah As-Sunniyah, Kencong-Jember
  • Rizqy Amalia Nurfadila Tadris Matematika, Universitas Al Falah As Sunniyah
  • Abdul Rosi Tadris Matematika, Universitas Al Falah As Sunniyah

Keywords:

Pelabelan graf, pelabelan komposit, graf unicyclic

Abstract

Penelitian ini bertujuan untuk membahas pelabelan komposit pada beberapa keluarga graf unicyclic (graf terhubung yang hanyamemiliki satu siklus). Misalkan ???? = (????, ????) graf terhubung sederhana dengan order ???? dan size ????. Pelabelan komposit pada graf ???? merupakan fungsi bijektif ????: ????(????) ∪ ????(????) → {1, 2, … , ???? + ????} sedemikian sehingga ????????????(????(????????), ????(????????)) ≠ 1 dengan ????, ????, ???? ∈ ????(????). Graf yang memenuhi kaidah pelabelan komposit disebut graf komposit. Metode yang digunakan dalam penelitian ini adalah studi literatur, metode deskriptif aksiomatik, dan metode pendeteksian pola. Dalam penelitian ini, didapatkan bahwa graf bull, graf net, graf cricket, graf peach, graf matahari, dan graf hasil operasi comb graf siklus dan graf bintang merupakan graf komposit. Penelitan ini diharapkan menambah literatur baru dalam teori graf khususnya pada topik pelabelan graf.

References

Berliner, A. H., Dean, N., Hook, J., Marr, A., Mbirika, A., & McBee, C. D. (2016). Coprime and Prime

Labellings of Graphs. Journal of Integer Sequence. 19(2): 1-14.

https://doi.org/10.48550/arXiv.1604.07698

Chartrand, G. & P. Zhang. 2019. Chromatic Graph Theory. Florida: CRC press.

Gallian, J. A.(2022).A Dynamic Survey of Graph Labeling. Electronic Journal of Combinatorics,6(25), 4-623. Article

DS6. https://doi.org/10.37236/11668

Hora, A., & Obata, N. (2007). Quantum probability and spectral analysis of graphs. Berlin. Springer

Science & Business Media.

Janani, R. dan T. Ramachandran. 2023. Coprime Edge Labeling of Graphs. SSRN. 1-11.

http://dx.doi.org/10.2139/ssrn.4486269

Janani, R., & Ramachandran, T. (2022). On Relatively Prime Edge Labeling of Graphs. Engineering

Letters, 30(2), 659-665.

Karuppuswamy, P., & Kureethara, J. V. (2018). Composite labelling of graphs-II. World Scientific News,

(99), 227-234.

Komarullah, H. (2024a, March). Pelabelan Total Koprima. In Prosiding Seminar Pendidikan Matematika

dan Matematika (Vol. 9). https://doi.org/10.21831/pspmm.v9i1.329

Komarullah, H. (2024b, March). P Pelabelan Komposit Pada Graf Memuat Cycle. In Prosiding Seminar

Pendidikan Matematika dan Matematika (Vol. 9). https://doi.org/10.21831/pspmm.v9i1.326

Kristiana, A. I., Dafik, D., A’yun, Q., Adawiyah, R., & Alfarisi, R. (2023). On Irregular Colorings of Unicyclic

Graph Family. CAUCHY: Jurnal Matematika Murni dan Aplikasi, 7(4), 503-512.

https://doi.org/10.18860/ca.v7i4.16917

Kumar, A., & Vats, A. K. (2020). Application of graph Labeling in Crystallography. Proc. Mater. Today.

-5. https://doi.org/10.1016/j.matpr.2020.09.371

Latifi, S. (2007). A study of fault tolerance in star graph. Information Processing Letters, 102(5), 196-

https://doi.org/10.1016/j.ipl.2006.12.013

Manikandan, T. R., & Sasikala, V. E. (2022). Composite Labelling of Unary Operation of Comp Graph

and 2-Tuple of Coconut Tree. Journal of Algebraic Statistics, 13(3), 899-906.

https://www.publishoa.com/index.php/journal/article/view/704/594

Maria, P. S., & Varghese, K. J. (2017). Composite Labelling of Graphs. International Journal of Applied

Graph Theory, 1(1), 34-41.

https://www.ijagt.com/upload/Composite_Labelling_of_Graphs.pdf

Marr, A. M., & Wallis, W. D. (2013). Magic graphs. New York: Birkhäuser.

Prajapati, U., & Shah, K. P. (2018). On odd prime labeling. International journal of Research and

Analytical Reviews, 5(4), 284-294. https://ijrar.com/upload_issue/ijrar_issue_20542373.pdf

Prasanna, N. L., Sravanthi, K., & Sudhakar, N. (2014). Applications of graph labeling in communication

networks. Oriental Journal of Computer Science and Technology, 7(1), 139-145.

http://www.computerscijournal.org/pdf/vol7no1/OJCSV07I1P139-145.pdf

Prihandoko, A. C., Dafik, D., & Agustin, I. H. (2019). Implementation of super H-antimagic total graph

on establishing stream cipher. Indonesian Journal of Combinatorics, 3(1), 14-23.

http://dx.doi.org/10.19184/ijc.2019.3.1.2

Rosen, K. H. (2011). Elementary number theory. London: Pearson Education.

Sedlack, J. (1964). Theory of Graphs and Its Applications. House Czechoslovak Acad. Sci. Prague, 163-

Sethujkkarasi, A., & Vidyanandini, S. (2022). Composite Labelling of Some Graphs and Application (No.

. EasyChair. https://easychair.org/publications/preprint/7tX4

Tout, R., Dabboucy, A. N., & Howalla, K. (1982). Prime labeling of graphs. National Academy Science

Letters-India, 5(11), 365-368.

Vinutha, M. S., & Arathi, P. (2017). Applications of graph coloring and labeling in computer

science. International Journal on Future Revolution in Computer Science and Communication

Engineering, 3(8), 14-16.

Wijaya, K., & Baskoro, E. T. (2016). On Ramsey (2K_2, 2H)(2 K 2, 2 H)-Minimal Graphs. InApplied Analysis in

Biological and Physical Sciences: ICMBAA, Aligarh, India, June 2015(pp. 219-225). Springer India.

Wallis, W. D. (2001). Magic Graphs. Birkhauser. Boston.

Published

2025-06-26