Pelabelan Komposit pada Beberapa Keluarga Graf Unicyclic
Keywords:
Pelabelan graf, pelabelan komposit, graf unicyclicAbstract
Penelitian ini bertujuan untuk membahas pelabelan komposit pada beberapa keluarga graf unicyclic (graf terhubung yang hanyamemiliki satu siklus). Misalkan ???? = (????, ????) graf terhubung sederhana dengan order ???? dan size ????. Pelabelan komposit pada graf ???? merupakan fungsi bijektif ????: ????(????) ∪ ????(????) → {1, 2, … , ???? + ????} sedemikian sehingga ????????????(????(????????), ????(????????)) ≠ 1 dengan ????, ????, ???? ∈ ????(????). Graf yang memenuhi kaidah pelabelan komposit disebut graf komposit. Metode yang digunakan dalam penelitian ini adalah studi literatur, metode deskriptif aksiomatik, dan metode pendeteksian pola. Dalam penelitian ini, didapatkan bahwa graf bull, graf net, graf cricket, graf peach, graf matahari, dan graf hasil operasi comb graf siklus dan graf bintang merupakan graf komposit. Penelitan ini diharapkan menambah literatur baru dalam teori graf khususnya pada topik pelabelan graf.
References
Berliner, A. H., Dean, N., Hook, J., Marr, A., Mbirika, A., & McBee, C. D. (2016). Coprime and Prime
Labellings of Graphs. Journal of Integer Sequence. 19(2): 1-14.
https://doi.org/10.48550/arXiv.1604.07698
Chartrand, G. & P. Zhang. 2019. Chromatic Graph Theory. Florida: CRC press.
Gallian, J. A.(2022).A Dynamic Survey of Graph Labeling. Electronic Journal of Combinatorics,6(25), 4-623. Article
DS6. https://doi.org/10.37236/11668
Hora, A., & Obata, N. (2007). Quantum probability and spectral analysis of graphs. Berlin. Springer
Science & Business Media.
Janani, R. dan T. Ramachandran. 2023. Coprime Edge Labeling of Graphs. SSRN. 1-11.
http://dx.doi.org/10.2139/ssrn.4486269
Janani, R., & Ramachandran, T. (2022). On Relatively Prime Edge Labeling of Graphs. Engineering
Letters, 30(2), 659-665.
Karuppuswamy, P., & Kureethara, J. V. (2018). Composite labelling of graphs-II. World Scientific News,
(99), 227-234.
Komarullah, H. (2024a, March). Pelabelan Total Koprima. In Prosiding Seminar Pendidikan Matematika
dan Matematika (Vol. 9). https://doi.org/10.21831/pspmm.v9i1.329
Komarullah, H. (2024b, March). P Pelabelan Komposit Pada Graf Memuat Cycle. In Prosiding Seminar
Pendidikan Matematika dan Matematika (Vol. 9). https://doi.org/10.21831/pspmm.v9i1.326
Kristiana, A. I., Dafik, D., A’yun, Q., Adawiyah, R., & Alfarisi, R. (2023). On Irregular Colorings of Unicyclic
Graph Family. CAUCHY: Jurnal Matematika Murni dan Aplikasi, 7(4), 503-512.
https://doi.org/10.18860/ca.v7i4.16917
Kumar, A., & Vats, A. K. (2020). Application of graph Labeling in Crystallography. Proc. Mater. Today.
-5. https://doi.org/10.1016/j.matpr.2020.09.371
Latifi, S. (2007). A study of fault tolerance in star graph. Information Processing Letters, 102(5), 196-
https://doi.org/10.1016/j.ipl.2006.12.013
Manikandan, T. R., & Sasikala, V. E. (2022). Composite Labelling of Unary Operation of Comp Graph
and 2-Tuple of Coconut Tree. Journal of Algebraic Statistics, 13(3), 899-906.
https://www.publishoa.com/index.php/journal/article/view/704/594
Maria, P. S., & Varghese, K. J. (2017). Composite Labelling of Graphs. International Journal of Applied
Graph Theory, 1(1), 34-41.
https://www.ijagt.com/upload/Composite_Labelling_of_Graphs.pdf
Marr, A. M., & Wallis, W. D. (2013). Magic graphs. New York: Birkhäuser.
Prajapati, U., & Shah, K. P. (2018). On odd prime labeling. International journal of Research and
Analytical Reviews, 5(4), 284-294. https://ijrar.com/upload_issue/ijrar_issue_20542373.pdf
Prasanna, N. L., Sravanthi, K., & Sudhakar, N. (2014). Applications of graph labeling in communication
networks. Oriental Journal of Computer Science and Technology, 7(1), 139-145.
http://www.computerscijournal.org/pdf/vol7no1/OJCSV07I1P139-145.pdf
Prihandoko, A. C., Dafik, D., & Agustin, I. H. (2019). Implementation of super H-antimagic total graph
on establishing stream cipher. Indonesian Journal of Combinatorics, 3(1), 14-23.
http://dx.doi.org/10.19184/ijc.2019.3.1.2
Rosen, K. H. (2011). Elementary number theory. London: Pearson Education.
Sedlack, J. (1964). Theory of Graphs and Its Applications. House Czechoslovak Acad. Sci. Prague, 163-
Sethujkkarasi, A., & Vidyanandini, S. (2022). Composite Labelling of Some Graphs and Application (No.
. EasyChair. https://easychair.org/publications/preprint/7tX4
Tout, R., Dabboucy, A. N., & Howalla, K. (1982). Prime labeling of graphs. National Academy Science
Letters-India, 5(11), 365-368.
Vinutha, M. S., & Arathi, P. (2017). Applications of graph coloring and labeling in computer
science. International Journal on Future Revolution in Computer Science and Communication
Engineering, 3(8), 14-16.
Wijaya, K., & Baskoro, E. T. (2016). On Ramsey (2K_2, 2H)(2 K 2, 2 H)-Minimal Graphs. InApplied Analysis in
Biological and Physical Sciences: ICMBAA, Aligarh, India, June 2015(pp. 219-225). Springer India.
Wallis, W. D. (2001). Magic Graphs. Birkhauser. Boston.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.