Metode Mean Parameter Ranking-Weighted Arithmetic Mean pada Masalah Transportasi Fuzzy Segitiga Simetri

Authors

  • Solikhin Solikhin Universitas Diponegoro
  • Abdul Aziz Universitas Diponegoro

Keywords:

Transportasi Fuzzy, Mean parameter rangking, WAM

Abstract

Masalah transportasi merupakan masalah pendistribusian barang/produk dari sumber ke tujuan dengan tujuan meminimumkan total biaya. Penerapan masalah transportasi pada bidang logistic dan manajemen supply-chain dapat mengurangi biaya dan meningkatkan pelayanan. Terjadinya ketidakpastian di lapangan memunculkan masalah transportasi fuzzy. Artikel ini membahas kombinasi metode mean parameter rangking dan metode weighted arithmetic mean (WAM) untuk menyelesaikan masalah transportasi fuzzy khusunya bilangan fuzzy segitiga simetri. Metode mean parameter rangking digunakan untuk penegasan bilangan fuzzy ssegitiga simetri ke bilangan crips, sedangkan metode WAM digunakan untuk menyelesaikan masalah transportasi crips yang mana merupakan metode pencarian solusi fisibel awal. Berdasarkan hasil kajian, diperoleh langkah-langkah penyelesaian masalah transportasi fuzzy dengan metode kombinasi mean parameter rangking dan WAM. Kemudian diberikan contoh simulasi numerik.

Author Biographies

Solikhin Solikhin, Universitas Diponegoro

Departemen Matematika

Abdul Aziz, Universitas Diponegoro

Departemen Matematika

References

Siswanto, Operation Research. Jakarta: Erlangga, 2016.

W. L. Winston, Operations Research Applications and Algoritms, 4th ed. New York : Duxbury, 2004.

Wijaya A., Pengantar Riset Operasi. Edisi 2. Jakarta: Mitra Wacana media, 2012.

A. Quddoos, S. Javaid, and M. M. Khalid, “A New Method for Finding an Optimal Solution for Transportation Problems,” International Journal on Computer Science and Engineering (IJCSE), vol. 4, no. 7, pp. 1271–1274, July 2012.

Gaurav Sharma, S. H. Abbas, and V. K. Gupta, “Optimum Solution of Transportation problem with the help of Zero Point Method,” International Journal of Engineering Research & Technology (IJERT), vol. 1, pp. 1–6, July 2012.

S. Ezhil Vannan and S. Rekha, “A New Method for Obtaining an Optimal Solution for Transportation Problem,” International Journal of Engineering and Advanced Technology (IJEAT), vol. 2, pp. 369–371, June 2013.

Solikhin, “Metode Fuzzy ASM pada Masalah Transportasi Fuzzy Seimbang,” Prosiding, ISBN 978-602-73403-3-6, pp. 257-264, 2017.

P. Pandian and G. Natarajan, “A New Algorithm for Finding a Fuzzy Optimal Solution for Fuzzy Transportation Problems, “Applied Mathematical Sciences, vol. 4, pp. 79–90, May 2010.

M. R. Fegade, V. A. Jadhav, and A. A. Muley, “Solving Fuzzy Transportation Problem Using Zero Suffix and Robust Ranking Methodology,” IOSR Journal of Engineering (IOSRJEN), vol. 2, pp. 36–39, July 2012.

K. Thiagarajan, H. Saravanan, and P. Natarajan, “Finding on Optimal Solution for Transportation Problem- Zero Neighbouring Method,” Ultra Scientis, vol. 25A, pp. 281–284, July 2013.

M. M. Gothi, R. G. Patel, and B. S. Patel, “A concept of an optimal solution of the transportation problem using the weighted arithmetic mean,” Adv. Math. Sci. J., vol. 10, no. 3, pp. 1707–1720, 2021, doi: 10.37418/amsj.10.3.52.

S. Mohanaselvi and K. Ganesan,”Fuzzy Optimal Solution to Fuzzy Transportation Problem: A New Approach,” International Journal on Computer Science and Engineering (IJCSE), vol. 4, pp. 367–375, March 2012.

F. A. Giarcarlo, C. X. C. A. Barbara & E. W. Volmir, “New Methodology to Find Initial Solution for Transportation Problems, a Case Study with Fuzzy Parameter,” Applied Mathematical Sciences, vol. 9, pp. 915-927, 2015.

C. Sudhagar & K. Ganesan, “Fuzzy Integer Linear Programming with Fuzzy Decision Variables,” Applied Mathematical Sciences, vol. 4, pp. 3493-3502, 2010.

M. Shanmugasundari & K. Ganesan, “A Novel Approach for the Fuzzy Optimal Solution of Fuzzy Transportation Problem,” International Journal of Engineering Research and Applications (IJERA), vol. 3, pp. 1416-1424, 2013.

Published

2022-04-11